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Chapter 1

Introduction

1.1 Motivation

In recent years, understanding and quantifying the global hydrologic cycle has become a
priority research topic. Soil moisture, in particular, has gained a lot of attention as it con-
stitutes a key variable in the global hydrologic cycle. Land-atmosphere processes critically
depend on the state of soil moisture, as soil moisture partitions the energy fluxes available
at the land surface into latent and sensible heat fluxes. In addition, soil moisture conditions
are important in determining the amount of infiltration and groundwater recharge.

Improving our understanding of soil moisture and temperature conditions will help us in
many ways. Global circulation models are now routinely used in weather and climate pre-
dictions, but they usually contain only inadequate representations of the physical processes
at the land-atmosphere interface. A better understanding of soil moisture and temperature
dynamics will therefore help us with the assessment and prediction of global change and
improve our ability to produce reliable short-term weather forecasts.

Sustainable management of water resources for agricultural and urban use will be feasible
if we are able to more accurately quantify soil moisture conditions and the corresponding
recharge into groundwater aquifers. Predicting floods is not only a question of knowing
how much precipitation will reach the ground. An accurate flood forecast also depends on a
good knowledge of the prevalent soil moisture conditions. Moreover, there is a feedback of
soil moisture onto precipitation [Eltahir, 1998]. But to usefully incorporate such feedback
mechanism into hydrologic and meteorologic predictions, including the forecast of droughts,
it is again necessary to know the prevalent state of soil moisture.

Traditionally, improving models of large-scale soil moisture dynamics has been difficult
due to the lack of corresponding large-scale observations. However, the advent of remote
sensing data has now made it possible to study land-atmosphere processes on large spatial
scales. Ideally, the satellite data are used in conjunction with the existing land-surface
models to extract the valuable information contained in both the data and the models.
Such optimal merging of data and models is generally termed data assimilation. In a
variational assimilation scheme, the estimates are determined by minimizing a measure of
fit between the land-surface states and both prior information and new data. The measure
of fit is formulated using weights that depend on the corresponding uncertainties.

The observations that are available for assimilation are not always direct measurements
of the land surface variables of interest. This is especially true for satellite remote sensing
data. Satellites, for instance, cannot observe soil moisture directly, and only satellite-
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observed radiances may be used to infer soil moisture conditions. In this case, the model
consists not only of a component for soil moisture dynamics, but also of a forward Radia-
tive Transfer scheme relating the soil moisture fields to the remotely sensed radiances (or
brightness temperatures). Alternatively, off-line soil moisture retrievals could be obtained
by inverting the Radiative Transfer model. It is preferable, however, to assimilate satellite
radiances directly. It is much easier to specify appropriate weights for radiances in the
objective function than to estimate covariance structures for soil moisture retrievals. More-
over, the off-line inversion of the Radiative Transfer model presents an unnecessary source
of error.

Unlike sparse and infrequent observations, which can only be related to particular fields
at particular times and locations, estimates produced by an assimilation scheme can provide
a complete description in time and in space of the entire land-surface state, including soil
moisture, soil temperature, and canopy temperature. This is achieved by using a dynamic
model as part of the data assimilation algorithm. The data are effectively interpolated in
time and extrapolated in space by respecting the dynamical and physical constraints. From
such a complete picture, land-surface processes can be examined in detail. In meteorology,
the number of investigators using such estimated “data sets” is probably much greater than
those using any individual data type [Errico, 1999].

It is important to emphasize the fact that data assimilation reaches beyond mere model
calibration. An optimal data assimilation algorithm will consider all the useful information
and the errors contained in the model and the data along with the corresponding error
statistics. In addition to the consideration of measurement error, a modern assimilation
scheme usually involves the assumption of imperfect models, which is reflected in parameter
and model error (or process noise) terms in the model equations. Moreover, posterior error
covariances can be inferred.

Whereas model calibration is typically implemented to estimate a set of parameters
once and for all, data assimilation algorithms are designed to run in an operational mode,
continuously estimating state variables of interest. An additional feature of modern data
assimilation algorithms is the possibility to test scientific hypotheses by formulating the
model together with the statistical assumptions for the errors as a null hypothesis. If the
hypothesis is rejected, the data are not statistically consistent with the underlying assump-
tions on the model and the errors. In this case, the estimates are of little meaning, but
we would have learned something about land-surface dynamics. Finally, data assimilation
provides a valuable tool for assessing and validating observation systems.

Data assimilation techniques have been successfully used meteorology and oceanography.
In meteorology in particular, data assimilation has led to considerable improvements in the
quality of short-term weather forecasts over the past few decades. Today, six hour global
forecasts of wind and temperature produced with estimates derived from data assimilation
algorithms are generally as accurate in a root-mean-square sense as most individual verifying
observations themselves [Errico, 1999).

Hydrologists now face the challenge to apply true data assimilation techniques to all
problems where remote sensing data can provide new insights. However, this is a difficult
task due to the highly nonlinear nature of land-surface processes, the size of the problem,
and the lack of data and experience to determine error statistics accurately. Consequently,
the implementation of data assimilation techniques always requires trade-offs between res-
olution, complexity, computational effort, and data availability.

This study is predominantly a feasibility study. Its main goals are (1) to develop an
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optimal land surface data assimilation algorithm, and (2) to determine how useful remotely-
sensed L-band (1.4 GHz) passive microwave measurements could be for the large-scale esti-
mation of soil moisture.

1.2 Environmental Data Assimilation

In this Section, we briefly review a few influential studies in the field of environmental data
assimilation with a focus on large-scale applications. Our primary goal is to introduce data
assimilation techniques that have been used in the environmental sciences and to establish
a broader frame of reference for this thesis. We certainly do not claim to provide a full
review of the topic.

This Section covers a wide range of applications, mostly drawn from meteorology and
oceanography. In meteorology, in particular, massive amounts of observations have been
available for decades as operational data streams. Early on it has been indispensable to
develop methods that make optimal use of these data for numerical weather forecasting
and model development. More recently, large-scale operational observations that are useful
for oceanographers have become widely available, and advanced data assimilation systems
have been successfully developed and applied.

Large-scale hydrologic data assimilation, however, is still a field very much in its infancy.
This probably owes as much to the scarcity of large-scale data as to the lack of consensus
about how best to model land surface processes. In Section 1.2.3 we briefly present a few
studies on hydrologic parameter estimation and data assimilation. A specific survey of soil
moisture data assimilation can be found in Section 1.3.

Please note that our partitioning of the discussion into meteorologic, oceanographic,
and hydrologic data assimilation does not at all imply that the methods used in these
fields are different or separate. In fact, almost all assimilation techniques currently used
in environmental data assimilation are simplifications or variants of the weak-constraint
variational technique (Section 2.1) or, equivalently, the Kalman smoother [Gelb, 1974]. For
details on the equivalence and approximations of the optimal methods consult the review
papers cited below. All techniques can theoretically be applied to almost any dynamic
problem in the geosciences, and the most important factor in determining the choice of
method is usually computational feasibility.

1.2.1 Data Assimilation in Meteorology

“One of the main reasons we cannot tell what the weather will be tomorrow is that we do

not know accurately enough what the weather is today. [ ... | Data at the initial time of
a numerical forecast can be supplemented, however, by observations of the atmosphere over
a time interval preceding it. New observing systems [ ... | make it absolutely necessary to

find new and more satisfactory methods of assimilating meteorological observations — for
the dual purpose of defining atmospheric states and of issuing forecasts from states thus
defined”. This quote is taken from the preface of a volume on progress in data assimilation
published in 1981 [Bengtsson et al., 1981]. Almost two decades later, the European Centre
for Medium-Range Weather Forecasts (ECMWF') has implemented a fully four-dimensional
data assimilation algorithm in their operational forecast system [Klinker et al., 1999].
Since the early days of numerical weather forecasting, researchers have been trying to
merge data and models. Excellent descriptions, reviews, and comparisons of the various
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data assimilation techniques used in meteorology have been provided by Le Dimet and
Talagrand [1986], by Ghil and Malanotte-Rizzoli [1991], and by Daley [1991] on general
methods, by Lorenc [1986] on variational methods, and by Todling and Cohn [1994] on
sequential methods. Courtier et al. [1993] compiled a literature list on the use of adjoints,
variational methods and the Kalman filter in meteorology. The list includes comments and
goes back to 1955.

Weak-constraint Variational Assimilation

Unfortunately, truly optimal operational data assimilation with a full Kalman filter, a
Kalman smoother or an equivalent variational technique! is still not computationally fea-
sible, and the algorithm implemented at the European Centre (ECMWF) is not yet ideal.
(Why this is so will be discussed below.) However, a successful large-scale research appli-
cation of a fully optimal data assimilation approach has been presented by Bennett et al.
[1996]. Their study is unique in that the model is only imposed as a weak constraint. In
other words, errors in the model formulation are taken into account as process noise (or
model error). The optimal estimate is derived with the variational representer approach,
which is presented in detail in Section 2.3.

Bennett et al. [1996] invert a global Numerical Weather Prediction (NWP) model using
about 2500 scalar data from reprocessed cloud-track wind observations. However, in an
operational setting the assimilated data should include all of the global quality-controlled
but otherwise raw observations. The authors point out that there are about 40,000 in situ
observations alone [Daley, 1991], which clearly shows the current limitations of the technique
in an operational context.

Strong-constraint Variational Assimilation

There have been numerous attempts at simplifying either the model equations (although
the physics did not change, of course) or the optimal estimation equations in order to make
operational data assimilation computationally feasible. The algorithm recently implemented
operationally at the European Centre (ECMWTF) is based on the variational scheme 4DVAR
[Thépaut and Courtier, 1991; Thépaut et al., 1993; Courtier et al., 1994]. In 4DVAR, the
model is assumed perfect and imposed as a strong constraint, that is model errors are
neglected. Only uncertainties in the initial and boundary fields are taken into account. If
model error is present, as is certainly the case, using the model as a strong constraint may
result in erroneous adjustments of the estimates. In other words, the estimates of the initial
and boundary conditions must compensate for any significant model errors. However, unlike
the weak-constraint method proposed by Bennett et al. [1996], 4DVAR is already feasible
in the operational environment of the European Centre (ECMWF).

Simplified Kalman Filters

4DVAR is certainly an improvement over conventional Optimal Interpolation [Rabier et al.,
1993], which is used in most other weather forecasting centers (see below). But neglecting
model errors does constitute a serious limitation. As an alternative to 4DVAR, one could

1Optimality refers to the implementation of the full Kalman filter, the Kalman smoother, or a weak-
p Yy p ) )

constraint variational algorithm. We ignore for a moment any suboptimality resulting from nonlinearities in
the physics.
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think of sophisticated approximations to the Kalman filter which allow for model errors but
rely on a simplified propagation equation for the forecast error covariance. Such approxima-
tions are also called low-rank approximations of the full Kalman filter. Dee [1991] suggests
a Kalman filter in which a simplified version of the dynamic model is used for the forecast
error covariance propagation. Alternatively, Cohn and Todling [1996] suggest a filter based
on partial eigenvalue decompositions of the forecast error covariance together with adaptive
tuning based on reduced resolution ideas.

Optimal Interpolation

To this day, almost all operational weather forecast centers still use Optimal Interpolation
or variants thereof as their method of choice. Optimal Interpolation can be viewed as a sim-
plified Kalman filter in which the propagation of the estimation error covariance is entirely
neglected [Daley, 1991]. In return for the computational savings, the complicated and time-
dependent error covariance fields of the atmospheric states must be accurately estimated.
In practice, this is quite impossible and leads to rather suboptimal assimilation algorithms,
even though the name of the method would suggest otherwise. Moreover, Optimal Inter-
polation is usually implemented in the spectral domain, which limits the choices of error
covariance models in practical applications. Finally, the approximate solution method for
the update equations in conventional Optimal Interpolation can lead to dynamic imbalances
[Cohn et al., 1998].

For these reasons, NASA’s Data Assimilation Office has recently developed the Physical-
space Statistical Analysis System (PSAS) as an improved variant of Optimal Interpolation
[Cohn et al., 1998; Chen et al., 1999]. The new method has been included into the Goddard
Earth Observing System (GEOS) data assimilation package. PSAS operates in physical
space rather than in the spectral domain and employs a different numerical method to solve
for the updates. Since it is operating in physical space, PSAS is capable of using more
advanced error covariance models than conventional Optimal Interpolation.

1.2.2 Data Assimilation in Oceanography

In oceanography, operational data streams have not been available in the same way as in
meteorology. Therefore the focus of the investigations has been somewhat different, oriented
more towards learning about ocean dynamics by using optimal methods for individual case
studies whenever data are available. Ghil [1989], Bennett [1992], Ghil and Malanotte-Rizzoli
[1991], Evensen [1994a], Malanotte-Rizzoli [1996], and Wunsch [1996] offer good collections,
descriptions, reviews, and comparisons of the various attempts to solve inverse problems in
oceanography.

Weak-constraint Variational Assimilation

Egbert et al. [1994] use the direct representer algorithm (Section 2.3) to estimate global tides
from the TOPEX/POSEIDON altimeter data. Even though the tide model is linear, which
is rarely the case for geophysical applications, the number of remote sensing data is still
too big for a naive implementation of the direct representer approach. Egbert et al. [1994]
therefore develop a set of steps in which they reduce the dimensionality of the problem.
Eknes and Evensen [1997] extend the representer formalism by solving a simultaneous
parameter and state estimation problem with a weak-constraint formulation for an Ekman
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model. Finally, Bennett et al. [1998] apply the indirect representer algorithm to assimilate
data from the Tropical Atmosphere-Ocean (TAO) array into a coupled model of the tropical
Pacific. They compare their weak-constraint approach with a strong-constraint algorithm
and reach the important conclusion that the assumption of a perfect model must be clearly
rejected in this case study.

Simplified Kalman Filters

A low-rank approximation of the Kalman filter has been applied by Verlaan and Heemink
[1997] to the tidal flow forecasting problem. Their approach is to combine a reduced rank
approximation of the error covariance with a square root factorization. The use of the
factorization ensures that the error covariance matrix stays positive-definite at all times,
while the smaller rank reduces the computational effort.

Asif and Moura [1999] develop a computationally efficient formulation of the optimal
Kalman filter which is based on the block structure that results from the discretization of the
partial differential equations commonly used in the physical sciences and from the sparseness
of the measurements, for example satellite scans. The authors further develop an approxi-
mate implementation of the block Kalman filter. Underlying this simplified implementation
is the approximation of the inverse error covariance matrix, that is the information matrix,
by a sparse block banded matrix. Such banded approximations correspond in essence to
modeling the error field in the spatial estimates at each point in time as a reduced-order
Markov random field. To demonstrate the concept, Asif and Moura [1999] use the optimal
filter and the simplified scheme to assimilate synthetic satellite altimeter data into a linear
shallow water model. The comparison shows that the suboptimal filter performs well and
that the approximations of the simplified filter are reasonable.

Yet another simplification to the Kalman filter for large-scale applications has been pro-
posed by Evensen [1994b]. In the so-called Ensemble Kalman Filter, the error covariance is
propagated with a Monte Carlo method. Instead of solving the Riccati equation for the error
covariance evolution, the scheme is based on propagating an ensemble of model forecasts.
If a measurement becomes available, the forecast error covariance needed for the update
step is estimated from this ensemble. Evensen and van Leeuwen [1996] use the Ensemble
Kalman Filter to assimilate Geosat altimeter data into a two-layer quasi-geostrophic model
of the Agulhas Current. The validity of the ensemble approach is obviously dependent on
the size of the ensemble. It does seem daring to estimate the forecast error covariance from
an ensemble of 500 model trajectories when the state vector is approximately of dimension
100, that is when the error covariance matrix contains on the order of 10,000 elements.

Very recently, Lermusiaux and Robinson [1999a] presented an assimilation scheme based
on a combination of the Ensemble Kalman Filter and a reduced rank approximation. Like
in the Ensemble Kalman Filter, the error covariance is propagated with a Monte Carlo
approach. Before the update step, however, the covariance matrix is reduced in rank. The
authors formulate an objective criterion to decide whether the addition of another member
to the existing ensemble is necessary or not. The result is a suboptimal filter which tracks
an evolving error subspace in space and in time. Consequently, the scheme is termed error
subspace statistical estimation (ESSE).

In a companion paper, Lermusiaux and Robinson [1999b] apply their algorithm to shelf-
break front simulations in the Middle Atlantic Bight. Identical twin (synthetic) experiments
are conducted under the assumption of a perfect model, that is model errors are neglected.
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Moreover, the synthetic observations do not contain measurement error, although a small
measurement error is used in the estimation algorithm. The proposed filter compares fa-
vorably to a traditional Optimal Interpolation scheme which does not include any error
covariance propagation. In case the computational demand for the proposed filter is too big
for a given operational application, the authors suggest that their scheme could be used to
improve the parameterizations of the Optimal Interpolation approach.

Multiresolution Optimal Interpolation

Fieguth et al. [1995] have developed and applied a new variant of Optimal Interpolation. The
goal is to provide interpolated estimates at multiple resolutions at the time of the update
or analysis step. The multiresolution algorithm is a generalization of time series state-space
models for which the Kalman filter is an efficient estimator. When applying the multi-scale
estimation technique, the biggest task is to build a model for the particular application that
fits the covariance matrix at the finest scale. In addition to providing interpolated estimates
and accompanying error variance statistics at multiple resolutions, a striking advantage of
the multi-scale estimation framework is that its complexity scales linearly with the problem
size. Moreover, the efficiency of the algorithm is entirely insensitive to irregularities in the
sampling or spatial distribution of measurements and to heterogeneities in measurement
errors or model parameters. Consequently, the approach has the potential of being an
effective tool in a variety of remote sensing problems.

Fieguth et al. [1995] have applied the multiresolution estimation algorithm to the inter-
polation and statistical analysis of the TOPEX/POSEIDON altimeter data in the North
Pacific Ocean. Another application of the multi-scale Optimal Interpolation algorithm to
the mapping of temperature in the northeastern Pacific has been published by Menemenlis
et al. [1997]. The authors also concern themselves with the development of a class of multi-
scale statistical models appropriate for oceanographic mapping. Finally, Fieguth et al.
[1998] have applied the method to map the sea level anomaly of the Mediterranean Sea
based on TOPEX/POSEIDON and ERS-1 data. Unfortunately, the extension of the mul-
tiresolution framework to problems with temporal evolution presents formidable challenges.
The development of temporally dynamic models is the subject of ongoing research.

1.2.3 Data Assimilation in Hydrology

In hydrology, inverse methods have traditionally been focusing on parameter estimation
and model calibration rather than state estimation. In particular for groundwater inverse
problems, measurements are scarce, and highly heterogeneous parameters such as the hy-
draulic conductivity are virtually unknown a priori. McLaughlin and Townley [1996] offer
an excellent review of the subsurface data assimilation problem. Also, Zimmerman et al.
[1998] compare seven geostatistically based inverse approaches to estimate transmissivities
for modeling advective transport by groundwater flow. Recently, Reid [1996] and Sun [1997]
have worked on parameter estimation in groundwater contaminant transport problems. Fi-
nally, Daniel et al. [1999] have applied the multiscale estimation approach described in
Section 1.2.2 to the estimation of solute travel time.

Hydrologic data assimilation as a state estimation problem has only very recently become
a topic of widespread interest. In a review of hydrologic data assimilation published in
1995, McLaughlin [1995] is “unaware of any studies which use distributed watershed models
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to assimilate field data”. Recent data assimilation efforts to estimate soil moisture are
summarized in Section 1.3.

1.3 State of the Art of Soil Moisture Data Assimilation

In this Section, we attempt to assess the state of the art of data assimilation techniques
used for the estimation of soil moisture. Only selected works will be discussed, with a focus
on studies that apply optimal estimation techniques or at least non-trivial approximations
thereof. By no means do we claim for our overview to be complete.

Two obvious classification schemes can be applied. In a first scheme, the studies can
crudely be classified into a first category consisting of spatially one-dimensional physical
models using synthetic data [Entekhabi et al., 1994; Milly, 1986], or small-scale field data
[Mahfouf, 1991; Katul et al., 1993; Parlange et al., 1993; Galantowicz et al., 1999; Calvet
et al., 1998; Callies et al., 1998; Bouyssel et al., 1999; Castelli et al., 1999], and a second
category, in which large-scale field cases have been investigated [Houser et al., 1998; Bouttier
et al., 1993b; Rhodin et al., 1999]. In the first category of small-scale studies, the dimensions
of the state vector and the observation vector are small, and the computational effort for
truly optimal estimation is easily bearable. The models in the second category of large-
scale applications are horizontally distributed and of high dimensionality. Consequently,
only suboptimal filters have been implemented to date.

A second classification could be based on the data types that are assimilated. With
the exception of [Castelli et al., 1999], the studies of Sections 1.3.1 and 1.3.2 use either
direct measurements of soil moisture or remotely sensed brightness data which are very
closely related to surface soil moisture. Since such measurements of soil moisture are not
yet available operationally, there have been numerous investigations on soil moisture data
assimilation from low-level atmospheric parameters such as air temperature and relative
humidity at 2m above the ground. However, these parameters are only weakly and indirectly
related to surface soil moisture. The latter studies are geared towards improving numerical
weather prediction and treat soil moisture rather as a tuning parameter. For this reason
we describe them in the separate Section 1.3.3.

1.3.1 One-dimensional Optimal Estimation Approaches

If the modeled land surface system is one-dimensional and contains only a single vertical
column, the dimension of the state vector is small and the application of truly optimal esti-
mation techniques is not limited by computational resources. One such optimal technique
is the Kalman filter [Gelb, 1974], which has been used by many investigators. Other in-
vestigators have applied a variational approach, which is described in detail in Section 2.1.
Among the latter are Mahfouf [1991], Callies et al. [1998] and Bouyssel et al. [1999]. Since
they assimilate low-level atmospheric observations to infer soil moisture, their studies are
discussed in Section 1.3.3, even though optimal variational assimilation methods are used.

The Study by Milly [1986]

Milly [1986] presented a study to determine the optimal temporal characteristics of a remote
soil moisture sensor. He uses a very simple linear soil moisture model in which the param-
eters are perfectly known. The forcing consists of a sequence of equally spaced Dirac delta
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functions to model the precipitation input. Milly [1986] uses a full Kalman filter to evaluate
the relative merits of the accuracy and the sampling frequency of the measurements.

The Studies by Katul et al. [1993] and by Parlange et al. [1993]

Katul et al. [1993] use an Extended Kalman Filter (EKF) for the estimation of the soil
moisture state in a simple bucket model. The model is obtained from the depth-integration
of a one-dimensional version of Richards’ equation, which results in a nonlinear state-space
formulation with a scalar state. A no-flow boundary condition is imposed at the top, and the
flux at the lower boundary is prescribed. The hydraulic conductivity and the soil moisture
content are related through a simple exponential-type two-parameter model.

The assimilated soil moisture data are neutron-probe measurements from a small field
drainage experiment carried out by the authors. In addition to the state estimation, Katul
et al. [1993] also estimate the two soil hydraulic parameters, the initial estimation error
variance, and the model error of the state-space formulation. These four parameters are
determined through repeated runs of the Extended Kalman Filter. For every run, a set of
parameters is guessed, and a goodness-of-fit objective function is evaluated. The goodness-
of-fit is measured with a sum of squared differences between the predicted states and the
corresponding measurements. No prior information about the parameters is used. The final
set of parameters is then given by the best fit. To carry out the optimization, the authors
implemented a simplex scheme.

In a similar study, Parlange et al. [1993] estimate the field scale diffusivity together with
the initial estimation error variance and the model error of the state-space formulation. The
starting point here is an approximate solution to the depth-integrated diffusion equation,
combined with a water balance equation. Once the model equation is cast into a state-
space formulation, the mechanics of the estimation algorithm are identical to the approach
by Katul et al. [1993].

The Studies by Entekhabi et al. [1994] and by Galantowicz et al. [1999]

The studies by Entekhabi et al. [1994] and by Galantowicz et al. [1999] stand out because
an optimal data assimilation approach is applied to a multi-layer model of soil moisture
and temperature dynamics. The authors use a Kalman filter to update the temperature
and moisture profile from observations of the brightness temperature. The spatially one-
dimensional model is entirely physically-based, making use of Richards’ equation, the heat
equation, and a model for the radiative transfer.

Entekhabi et al. [1994] show that it is possible to infer information about the temperature
and the moisture at depths below the penetration depth of the microwaves. Note, however,
that the focus is on the methodology. Most importantly, the data are completely synthetic
and vegetation is not modeled. Only one vertical column is considered. In addition, updates
from the brightness temperature and the infrared temperature data are made hourly, which
is not a very realistic situation.

In a very recent study, Galantowicz et al. [1999] present an assimilation algorithm which
is based on the Kalman filter and similar to the one in Entekhabi et al. [1994]. The
algorithm is tested on field data, namely data from the Beltsville Agricultural Research
Center (BARC), Maryland, taken during a seven-day drydown in July 1994 [Jackson et al.,
1997]. Moreover, the authors test their algorithm with a four-month series of simulated
operational conditions. The results indicate that the soil moisture profile can indeed be
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retrieved from updates of the brightness temperature made only every three days, and that
the proposed data assimilation scheme is stable.

The Study by Calvet et al. [1998]

Calvet et al. [1998] present a comprehensive study on the feasibility of retrieving root zone
soil moisture from surface soil moisture or surface soil temperature observations. They
use the ISBA (Interaction between Soil, Biosphere, and Atmosphere) surface scheme of
the French weather forecast system, which models soil moisture in just two layers, a very
shallow surface layer and a deep reservoir.

The assimilation technique is a strong-constraint variational method. The uncertain
parameter is the initial soil moisture of the deep reservoir, and the objective function to
be minimized consists of the root mean square difference between the measured and the
simulated values of the observed surface soil moisture content. No prior regularizing term
is included in the objective. The data are from two months of field observations taken in
Spring and Fall 1995 in southern France. The assimilation period is either a moving fifteen-
day window or a moving five-day window during the thirty-day observation periods. In a
series of assimilation experiments, observations are available to the estimation algorithm
from twice daily to once every four days.

In conclusion, Calvet et al. [1998] suggest that deep soil moisture can indeed be retrieved
with reasonable accuracy from surface soil moisture observations once every three days,
but concede that soil moisture estimation from soil temperature measurements can at best
work under dry conditions. Finally, the authors conclude that the length of the assimilation
window should not be less than ten days.

The Study by Castelli et al. [1999]

A major goal of the study by Castelli et al. [1999] is to reduce the data needs for surface
flux and soil moisture estimation. Therefore, the authors only assimilate observations of
ground temperature, which are readily obtained from current remote sensing platforms. The
uncertain input is a time-dependent parameter which is called soil moisture index. The soil
moisture index describes the limitation of evaporation due to the limited availability of soil
water and is closely related to the surface heat flux.

Castelli et al. [1999] use a variational technique and include the surface energy balance
as a physical constraint in the objective function. In mathematical terms, the estimation
of the time-dependent soil moisture index amounts to the estimation of a state-dependent
model error term. The scalar weights used in the objective function imply that this model
error is not correlated in time.

Estimates of the surface heat flux and the soil moisture index are derived from the data
of the First International Satellite Land Surface Climatology Project Field Experiment
(FIFE). The experiments cover the summer months of 1987 and 1988, but the individ-
ual assimilation windows are limited to one day. Daily averages of the estimated surface
heat flux compare well to independent latent heat flux observations. However, the au-
thors conclude that there is a need to discriminate between soil moisture and aerodynamic
contributions to the surface control over evaporation.
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Discussion

The straightforward application of optimal data assimilation algorithms to one-dimensional
problems has met with fair success, and the potential for inferring soil moisture from remote
sensing observations of passive microwave data has clearly been demonstrated. In light of
these results, the most pressing question is how best to extend the techniques presented
above to large-scale applications.

1.3.2 The Study by Houser et al. [1998]

The so far most comprehensive study on soil moisture data assimilation has been carried out
by Houser et al. [1998]. The authors modified and extended the TOPLATS land-atmosphere
transfer scheme [Famiglietti and Wood, 1994a; Famiglietti and Wood, 1994b]. TOPLATS
is a spatially distributed hydrologic model to predict the diurnal dynamics of the water and
energy fluxes at the land surface as well as the local vertical recharge into the underlying
aquifer. Its algorithms are intentionally simpler than the ones used in operational surface-
vegetation-atmosphere transfer schemes (SVATS). The basic components of TOPLATS are
water balance equations for the canopy and the soil as well as an energy balance equation at
the surface. The original model describes the unsaturated zone with two layers, a root zone
and a transmission zone. Houser et al. [1998] added a shallow third soil layer at the top.
The soil moisture in this new soil layer can possibly be inferred from remote sensing. The
soil hydraulic properties are parameterized with the model of Brooks and Corey [1964] and
the soil moisture dynamics are based on an approximate analytical solution of Richards’
equation using infiltration and exfiltration capacities [Eagleson, 1978]. Horizontal flow exists
only in the underlying saturated layer. In the unsaturated zone, lateral flow is completely
neglected. The model is applied to the Walnut Gulch watershed in southeastern Arizona.

In the following, we briefly describe the data assimilation techniques that have been
applied by Houser et al. [1998]. In all cases, the assimilated data are soil moisture values that
have been obtained through an off-line inversion of remotely sensed microwave observations.

Direct Insertion and Statistical Corrections

The simplest data assimilation method used by Houser et al. [1998] is Direct Insertion. Here,
all observations are assumed perfect. In the update step, the model prediction is simply
replaced with the measurement for all observed components of the state vector. No other
assimilation is performed, nor are the observations pre-interpolated. This results in very
abrupt discontinuities of the soil moisture field. Any advection of information is accom-
plished through the subsequent prediction steps. The propagation of the error covariance is
entirely neglected. The computational savings are enormous, and the computational effort
is almost the same as for a pure simulation run without using the data at all. However, the
scheme is wholly suboptimal.

Houser et al. [1998] also employ a technique they call Statistical Corrections. In this
approach, the mean and the variance of the observations are computed. Then the com-
ponents of the predicted state vector are rescaled in order to match the statistics of the
observations.
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Nudging

Next, Houser et al. [1998] test two forms of nudging. The idea behind nudging is to add an
artificial forcing term to the model equation such as to drive the state continuously towards
the observations. This artificial forcing is not obtained from covariance propagation and the
filter is thus suboptimal. Two nudging techniques are used. In “Nudging Towards a Grid-
ded Analysis”, the observations are pre-interpolated to the model grid. This means that the
scheme can only be applied within a region of observations. After the pre-interpolation, “ob-
servations” are available for every state. In the second nudging technique, termed “Nudging
to Individual Observations,” no interpolation is carried out. In both nudging techniques,
the artificial forcing is entirely empirical. Houser et al. [1998] implemented all possible
combinations of the two nudging techniques together with the method of Statistical Cor-
rections. The authors were most satisfied with “Nudging to Individual Observations” both
inside and outside the region of observations.

Optimal Interpolation

Optimal Interpolation (or Statistical Interpolation) is a special case of the Kalman Filter
[Daley, 1991]. In Optimal Interpolation, the error covariance propagation equations are
omitted. Houser et al. [1998] approximate the predicted error covariance (or background
error covariance) for the computation of the gain in the following way. First, the difference
between observed and TOPLATS-simulated values is computed. Second, the covariance of
this difference is calculated. Third, an analytical covariance model is fitted to the data.
Houser et al. [1998] use a model for a climatological background derived by Thiebaux
[1976]. Although Optimal Interpolation is always less computationally demanding than a
full Kalman Filter, the computational effort for the application of Houser et al. [1998] was
still by far too large. The authors therefore reduced the number of measurements in an
ad hoc fashion. They followed two approaches. In the first approach, a random subset
of observation is chosen for each grid point, and together with the observation closest to
the given grid point, only these measurements are assimilated. All other measurements
are discarded. In the second approach, “super-observations” are obtained by averaging the
available measurements over a coarser spatial grid and thus reducing their number.

Discussion

Except for Optimal Interpolation, all data assimilation techniques used by Houser et al.
[1998] are empirical. By empirical we mean that the estimation equations are neither de-
rived from the optimization of an objective criterion, nor are they consistent simplifications
such that the approximation error could be quantified in some way. An example for the
former would be a full Kalman Filter, an example for the latter would be an eigenvalue de-
composition with only the largest eigenvalues retained in the estimation algorithm. Optimal
Interpolation in its full form could be called semi-empirical. It is an optimal interpolator
in space at each isolated time step, provided the correct background error covariance is
known. The suboptimality with respect to the Kalman Filter is due to the fact that the
error covariance is not propagated. Therefore Optimal Interpolation is only optimal if the
Kalman Filter happens to operate in steady-state and if the background error covariance
of the Optimal Interpolation algorithm is equal to the steady-state Kalman Filter error co-
variance prediction. However, in the way Optimal Interpolation is implemented by Houser
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et al. [1998], namely through the ad hoc reduction of the number of measurements, the
estimation algorithm is certainly empirical.

The degree of optimality in the data assimilation approaches implemented by Houser
et al. [1998] is not clear and strongly depends on the particular application. In the case
of nudging, the degree of optimality also depends on the choice of the many parameters.
In the Optimal Interpolation scheme as implemented by Houser et al. [1998], the ad hoc
reduction of the number of measurements defies a strict assessment of the approximation.

1.3.3 Soil Moisture Estimation from Atmospheric Observations
The Study by Mahfouf [1991]

Mahfouf [1991] introduced a technique to estimate soil moisture from the assimilation of
low-level atmospheric parameters such as relative humidity and air temperature. The main
purpose of the investigation is to come up with a better initialization of soil moisture
in atmospheric models and consequently with better short- and medium-range weather
forecasts.

The basic idea is that errors in the predicted meteorologic quantities may be related
to errors in soil moisture. This is hypothesized to be particularly true for low-level air
temperature and humidity, which are linked to surface and deep soil moisture by the sensible
and latent heat fluxes. In other words, the assimilated data are not measurements of soil
moisture, but rather observations of low-level atmospheric parameters, namely screen level
temperature and relative humidity.

Two assimilation algorithms are developed. The first approach is a variational algorithm
based on the minimization of an objective function. The objective function consists of the
weighted sum of squared differences between the observed and the estimated low-level air
temperature and relative humidity. No regularizing prior term for the uncertain initial soil
moisture is included in the performance index, and the model is imposed as a strong con-
straint. The objective function is minimized with a standard Gauss-Newton method. This
optimal scheme takes the modeled nonlinear relationship between the low-level parameters
and soil moisture fully into account and is therefore computationally expensive.

The second approach is a statistical algorithm based on linear regression. This sequential
scheme is suboptimal but computationally efficient and compatible with current operational
assimilation. To get soil moisture estimates, the errors in the low-level atmospheric parame-
ters are linearly related to the soil moisture errors in two layers, a very shallow top layer and
a deeper reservoir. The linear relationship is described with a set of so-called nudging co-
efficients, which are in turn determined by an Optimal Interpolation analysis [Daley, 1991].
This implies that the nudging coeflicients depend on the observation and forecast error
statistics of the low-level atmospheric parameters as well as on the forecast error statistics
of soil moisture. Mahfouf [1991] infers the necessary forecast error covariances with a Monte
Carlo technique.

Mahfouf [1991] successfully assimilates field data into a one-dimensional version of a
mesoscale numerical weather prediction model for three 48-hour periods. The results indi-
cate that under certain atmospheric conditions it is indeed possible to estimate soil moisture
from low-level atmospheric variables. The author also states that the variational scheme is
preferable to the sequential scheme, but that the latter appears good enough to be given se-
rious consideration for implementation in current operational numerical weather prediction
systems.
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The Study by Bouttier et al. [1993a]

Bouttier et al. [1993a] further investigate the sequential soil moisture estimation technique
introduced by Mahfouf [1991]. As an alternative to the sequential approach of Mahfouf
[1991], Bouttier et al. [1993a] provide an approximate analytic formulation of the nudging
coefficients. This avoids the computationally expensive Monte Carlo simulations needed to
come up with reasonable forecast error covariances. In the analytic formulation, the nudging
coefficients are given as explicit expressions of the surface characteristics, most importantly
of the vegetation parameters.

Moreover, Bouttier et al. [1993a] assess the sensitivity of the estimates to the vegetation,
the soil texture, and the wind conditions. Vegetation is identified as the most crucial pa-
rameter. In a companion paper, Bouttier et al. [1993b] implement their simplified analytical
filter in a mesoscale model. The study area covers 400 x 400 km? in the southwest of France.
Disturbing the initial soil moisture conditions from a reference simulation, Bouttier et al.
[1993b] show that their nudging technique is able to restore soil moisture to the reference
value within 48 hours.

The Study by Hu et al. [1999]

Hu et al. [1999] apply the sequential nudging technique of Mahfouf [1991] to 16 sites selected
to sample a range of climates and land covers across the globe. Their goal is to derive a
single set of nudging coefficients, which is then applied to a test site. The authors report
computational instability when assimilating air temperature and relative humidity directly.
Apparently, the strong correlation between air temperature and relative humidity makes
the coefficient matrix of the equation for the nudging coefficients close to singular. The
problem is overcome with a Principal Component Analysis.

Finally, Hu et al. [1999] conclude that numerical weather prediction can be improved by
the nudging technique, but that nudging is unable to determine accurately the soil moisture
within soil layers that are accessible to the atmosphere. Moreover, the improvement in the
weather forecast holds only if the meteorologic model simulates precipitation poorly. If, on
the other hand, precipitation is simulated well but surface radiation is modeled poorly, the
nudging technique could erroneously adjust soil moisture.

The Studies by Callies et al. [1998] and by Bouyssel et al. [1999]

Following up on the variational approach of Mahfouf [1991], Callies et al. [1998] and Bouys-
sel et al. [1999] further investigate the feasibility of off-line soil moisture estimation for
operational weather forecasting. The authors use one-dimensional versions of the soil and
atmospheric boundary layer models of the German and the French weather services, respec-
tively. Apart from minor differences, both soil models consist of a two-layer force-restore
approximation for the soil temperature and of a two-layer soil moisture model. Callies
et al. [1998] and Bouyssel et al. [1999] assimilate near-surface atmospheric measurements
of air temperature and relative humidity to estimate the initial soil moisture conditions for
a one-day and a two-day assimilation window, respectively. Whereas Bouyssel et al. [1999]
choose ideal anticyclonic conditions with a clear sky and low advection, Callies et al. [1998]
specifically choose a day reflecting non-perfect conditions.

While Callies et al. [1998] use the original strong constraint variational approach of
Mahfouf [1991], Bouyssel et al. [1999] add a regularizing prior misfit term for the uncertain
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initial condition to the objective function. Neither study takes model errors into account.
Note that the variational approach of Callies et al. [1998] is approximate because some
of the fluxes in the atmospheric model are kept constant while the initial soil moisture is
changed.

Both studies closely investigate the shape of the cost function and find that the initial
soil moisture in the two layers cannot be estimated unambiguously. Lacking a regularizing
term in the objective function, Callies et al. [1998] resort to fixing the soil moisture of the
lower layer. Bouyssel et al. [1999] relate the ambiguity to the relatively short assimilation
window and expect the problem to be solved by using longer assimilation periods.

In conclusion, the authors confirm the usefulness of the assimilation of soil moisture for
short-term weather forecasts even under non-perfect conditions. Callies et al. [1998] state
that “a significant part of the information carried by the data cannot be explained by the
need for higher energy input at the surface (stronger radiation) but must be attributed to an
incorrectly modeled Bowen ratio probably resulting from a bad soil moisture specification”.
However, their retrieved soil moisture seems to be too low for the season, which reveals the
estimated soil moisture as a tuning parameter for improving numerical weather prediction
rather than a physical quantity.

The Studies by Rhodin et al. [1999]

In a recent study, Rhodin et al. [1999] apply the technique of Callies et al. [1998] to a regional
weather forecast model. For the assimilation of soil moisture, all horizontal correlations are
neglected and the three-dimensional problem is treated as a collection of completely entirely
independent single-column assimilation problems. This offers huge computational savings,
but large-scale structures in the errors of the soil moisture fields, arising for example from
geologic processes, have to be neglected.

Discussion

Assimilating low-level atmospheric observations for the estimation of soil moisture offers
great opportunities to improve short- and medium-range weather forecasts. Most impor-
tantly, the data are readily available within operational data assimilation system used for
numerical weather prediction. However, the soil moisture values estimated in this way lack
physical meaning. Indeed, Callies et al. [1998] deduce that “soil moisture retrieval by the
present method should be considered as a parametric approach”.

Moreover, by dividing the domain into completely independent columns for the sake of
soil moisture assimilation, the approach followed by Rhodin et al. [1999] does not allow for
any explicit horizontal correlation of the initial condition of soil moisture. In their approach,
soil moisture is correlated horizontally only through the spatial correlation of the low-level
atmospheric parameters. This is clearly undesirable from a hydrologist’s point of view and
makes soil moisture even more of a tuning parameter.

Finally note that the indirect estimation of soil moisture from low-level atmospheric
parameters is unsuitable for cloudy conditions or situations with predominantly large-scale
advection. In these situations, air temperature and relative humidity are not related to
local soil moisture.
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1.4 Challenges in Hydrologic Data Assimilation

More research is necessary in order to set up an operational soil moisture data assimilation
package. In particular, investigations should be undertaken along the following lines.

e The data assimilation approach should be truly optimal and four-dimensional, that is
the large-scale correlation of land surface states should be considered explicitly. In-
troducing such structure only indirectly through correlations in low-level atmospheric
parameters as done by Rhodin et al. [1999] is clearly inadequate from a hydrologist’s
point of view. Trying to estimate forecast state error covariances for Optimal Inter-
polation approaches is similarly unsatisfactory. In other words, the data assimilation
algorithm should be optimal and provide for some form of large-scale error covariance
propagation.

e In order to deal with the complexity of real world applications, a land-surface model
suitable for hydrologic data assimilation has to be developed. Such a model must
capture the key physical processes, but at the same time be highly computationally
efficient.

e It is desirable to resolve the soil moisture profile in the field studies to a greater
extent. A finer discretization in the vertical allows for a much better description of
the nonlinear behavior than two-layer or three-layer models can provide.

e Off-line inversion of the remotely-sensed radiances into land surface states such as soil
moisture can lead to inconsistencies in the model physics. It is therefore preferable to
assimilate the remote sensing data directly into the hydrologic model.

e The temperature profile of the soil strongly affects the remotely sensed brightness
temperature. When brightness temperatures are assimilated, it is necessary to model
soil temperature along with soil moisture. The dynamics of the temperature profile can
easily be described with the heat equation or approximations thereof, and observations
of the surface temperature are readily available. Therefore, the land surface model
should include soil temperature, and the estimation algorithm should provide for the
assimilation of soil surface temperature measurements.

e Another problem that needs to be addressed is the mismatch between the scale of the
hydrologic model and the scale of the observations. In particular, ground-based ob-
servations of soil moisture are generally point measurements, whereas remotely sensed
observations are satellite footprints with a resolution of typically tens of kilometers.
The same disparity in scales is true for precipitation measurements, one of the most
important inputs for a soil moisture model. Moreover, inputs to hydrologic models
are often available at scales finer than the scales of satellite remote sensing data. This
creates a need for optimal downscaling methodologies. Hence, a consistent multiscale
framework needs to be developed in order to accommodate measurements at different
scales.

e Last but not least it is desirable to include more detailed models of the vegetation, as
vegetation is probably the most important factor for the calculation of the latent and
sensible heat fluxes at the land surface.
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We address all of the above topics in our research. However, due to the highly nonlinear
structure of the physical processes at the land surface, and given the high dimensionality
of real world applications, a compromise will have to be made between a desirable phys-
ical foundation of the model and crude simplifications in order to achieve computational
feasibility.
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